Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy
نویسندگان
چکیده
We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule-electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions.
منابع مشابه
Supporting Information for Probing the local environment of a single OPE3 molecule using inelastic electron tunneling spectroscopy
متن کامل
Inelastic electron tunneling via molecular vibrations in single-molecule transistors.
In single-molecule transistors, we observe inelastic cotunneling features that correspond energetically to vibrational excitations of the molecule, as determined by Raman and infrared spectroscopy. This is a form of inelastic electron tunneling spectroscopy of single molecules, with the transistor geometry allowing in situ tuning of the electronic states via a gate electrode. The vibrational fe...
متن کاملSingle-molecule reaction and characterization by vibrational excitation.
Controlled chemical reaction of single trans-2-butene molecules on the Pd(110) surface was realized by dosing tunneling electrons from the tip of a scanning tunneling microscope at 4.7 K. The reaction product was identified as a 1,3-butadiene molecule by inelastic electron tunneling spectroscopy. Threshold voltage for the reaction is approximately 365 mV, which coincides with the vibrational ex...
متن کاملModeling and Simulation of a Molecular Single-Electron Transistor
In this paper, to understand the concept of coupling, molecule density of states that coupled to the metal electrodes will be explained then, based on this concept, a weak and strong coupling for the molecules attached to the metal electrodes will be described. Capacitance model is used to explore the connection of addition energy with the Electron affinity and the ionization energy of the mole...
متن کاملCharacteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy.
A combined experimental and theoretical analysis of the charge transport through single-molecule junctions is performed to define the influence of molecular end groups for increasing electrode separation. For both amine-ended and thiol-ended octanes contacted to gold electrodes, we study signatures of chain formation by analyzing kinks in conductance traces, the junction length, and inelastic e...
متن کامل